Abstract

The CRISPR-Cas system has been used as a convenient tool for genome editing because the nuclease that cuts the target DNA and the guide RNA that recognizes the target are separated into modules. Cas12f1, which has a smaller size than that of other Cas nucleases, is easily loaded into vectors and is emerging as a new genome editing tool. In this study, AsCas12f1 was used to negatively select only Escherichia coli cells obtained by oligonucleotide-directed genome editing. Although double-, triple-, and quadruple-base substitutions were accurately and efficiently performed in the genome, the performance of single-base editing was poor. To resolve this limitation, we serially truncated the 3'-end of sgRNAs and determined the maximal truncation required to maintain the target DNA cleavage activity of Cas12f1. Negative selection of single-nucleotide-edited cells was efficiently performed with the maximally 3'-truncated sgRNA-Cas12f1 complex in vivo. Moreover, Sanger sequencing showed that the accuracy of single-nucleotide substitution, insertion, and deletion in the microbial genome was improved. These results demonstrated that a truncated sgRNA approach could be widely used for accurate CRISPR-mediated genome editing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call