Abstract

Wireless small-scale soft-bodied devices are capable of precise operation inside confined internal spaces, enabling various minimally invasive medical applications. However, such potential is constrained by the small output force and low work capacity of the current miniature soft actuators. To address this challenge, we report a small-scale soft actuator that harnesses the synergetic interactions between the coiled artificial muscle and radio frequency–magnetic heating. This wirelessly controlled actuator exhibits a large output force (~3.1 N) and high work capacity (3.5 J/g). Combining this actuator with different mechanical designs, its tensile and torsional behaviors can be engineered into different functional devices, such as a suture device, a pair of scissors, a driller, and a clamper. In addition, by assuming a spatially varying magnetization profile, a multilinked coiled muscle can have both magnetic field–induced bending and high contractile force. Such an approach could be used in various future untethered miniature medical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.