Abstract
BackgroundThe cyclic diguanylate (c-di-GMP) is currently considered an ubiquitous second messenger in bacteria that influences a wide range of cellular processes. One of the methodological approaches to unravel c-di-GMP regulatory networks involves raising the c-di-GMP intracellular levels, e.g. by expressing a diguanylate cyclase (DGC), to provoke phenotypic changes.ResultsWe have constructed mini-Tn7 delivery vectors for the integration and stable expression of the pleD* gene encoding a highly active DGC, which can be used to artificially increase the intracellular levels of c-di-GMP in Gram negative bacteria. The functionality of these new vectors has been validated in several plant-interacting α- and γ-proteobacteria. Similarly to vector plasmid-borne pleD*, the genome-borne mini-Tn7pleD* constructs provide significant increases in intracellular c-di-GMP, provoking expected phenotypic changes such as enhanced polysaccharide production, biofilm formation and reduced motility. However, the mini-Tn7pleD* constructs resulted far more stable in the absence of antibiotics than the plasmid-based pleD* constructs. Furthermore, we have also implemented an inducible system to modulate pleD* expression and intracellular c-di-GMP rises “on demand”.Conclusionsmini-Tn7pleD* constructs are very stable and are maintained during bacterial free-living growth as well as during interaction with eukaryotic hosts, in the absence of selective pressure. This high stability ensures experimental homogeneity in time and space with regard to enhancing c-di-GMP intracellular levels in bacteria of interest.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0521-6) contains supplementary material, which is available to authorized users.
Highlights
The cyclic diguanylate (c-di-GMP) is currently considered an ubiquitous second messenger in bacteria that influences a wide range of cellular processes
The cyclic diguanylate (c-di-GMP) was discovered only 27 years ago as an allosteric activator of bacterial cellulose synthase, but is currently considered an ubiquitous second messenger in bacteria that influences a wide range of cellular processes, including flagellum-mediated motility, cell cycle and exopolysaccharide (EPS) biosynthesis, as well as bacterial virulence [1]. c-di-GMP signalling systems are generally composed of three major constituents: diguanylate cyclases (DGCs, synthesize c-di-GMP from two GTP molecules), phosphodiesterases
Construction and insertion of mini-Tn7 vectors to increase intracellular levels of c-di-GMP in Gram-negative bacteria PleD from Caulobacter crescentus was one of the first and likely the best characterised DGC
Summary
We have constructed mini-Tn7 delivery vectors for the integration and stable expression of the pleD* gene encoding a highly active DGC, which can be used to artificially increase the intracellular levels of c-di-GMP in Gram negative bacteria. The functionality of these new vectors has been validated in several plant-interacting α- and γproteobacteria. Conclusions: mini-Tn7pleD* constructs are very stable and are maintained during bacterial free-living growth as well as during interaction with eukaryotic hosts, in the absence of selective pressure This high stability ensures experimental homogeneity in time and space with regard to enhancing c-di-GMP intracellular levels in bacteria of interest
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.