Abstract

湖泊微生物作为湖泊生态系统重要组成部分,在局域和区域的元素循环中发挥着关键作用.由于自然环境中微生物之间的复杂关系和对微生物认知的片面性,可在实验室培养的湖泊微生物比例不足1%.近10年来,宏基因组学技术在微生物生态学研究中得到了广泛应用,不仅扩展了对湖泊微生物群落组成和多样性的认识,更揭示了湖泊微生物的功能多样性和微生物之间的相互作用.特别是基于宏基因组数据的分装(Binning)手段,可以获取大量湖泊中未培养微生物的基因组信息,用于后续的比较基因组、生态进化和培养组学等研究.随着宏基因组学相关学科和技术的不断发展,其将在湖泊微生物生态学基础理论研究和环境生物监测应用中发挥更为重要的作用,成为人类了解湖泊生态系统功能和维持机制的有力工具.;As one of the essential components, microorganisms are the cores of biogeochemical circulation in lakes. However, due to the complex interaction among microorganisms and the incomplete description of their habitats, less than 1% of microorganisms in lakes can be cultivated in the laboratory. In the past ten years, metagenomic methods has been widely applied to the microbial researches, which enormously contribute to the understanding of microbiomes in lake ecosystems. The obtained results not only uncovered the composition and diversity of microbial communities, but also revealed the ecological functions of microbes as well as the interactions among microorganisms. Moreover, metagenome-assembled genomes (MAGs) of uncultured microorganisms can be obtained by various contig binning strategies based on metagenomic data mining, which can be subsequently used for comparative genomics and ecological evolution studies. With the continuous development of bioinformatics discipline and the relevant sequencing technologies, metagenomics will become a more powerful tool in basic ecological principle exploration and routine environmental biomonitoring, and also become the cornerstone of understanding the ecosystem function and maintaining the ecological services of lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call