Abstract

Transcranial magnetic stimulation (TMS) is rapidly becoming a leading method in both cognitive neuroscience and clinical neurology. However, the cellular and network level effects of stimulation are still unclear and their study relies heavily on indirect physiological measurements in humans. Direct electrophysiological studies of the effect of magnetic stimulation on neuronal activity in behaving animals are severely limited by both the size of the stimulating coils, which affect large regions of the animal brain, and the large artifacts generated on the recording electrodes. We present a novel mini-coil which is specifically aimed at studying the neurophysiological mechanism of magnetic stimulation in behaving primates. The mini-coil fits into a chronic recording chamber and provides focal activation of brain areas while enabling simultaneous extracellular multi-electrode recordings. We present a comparison of this coil to a commercial coil based on the theoretical and recorded magnetic fields and induced electric fields they generate. Subsequently, we present the signal recorded in the behaving primate during stimulation and demonstrate the ability to extract the spike trains of multiple single units from each of the electrodes with minimal periods affected by the stimulus artifact (median period <2.5ms). The directly recorded effect of the magnetic stimulation on cortical neurons is in line with peripheral recordings obtained in humans. This novel mini-coil is a key part of the infrastructure for studying the neurophysiological basis of magnetic stimulation, thereby enabling the development and testing of better magnetic stimulation tools and protocols for both neuroscientists and clinicians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.