Abstract

While the faithful transmission of genetic information requires a fidelity and stability of DNA that is involved in translation into proteins, it has become evident that a large part of noncoding DNA is organized in repeated sequences, which often exhibit a pronounced instability and dynamics. This applies both to longer repeated sequences, minisatellites (about 10-100 base pairs), and microsatellites (mostly 2-4 base pairs). Although these satellite DNAs are abundantly distributed in all kinds of organisms, no clear function has been discerned for them. However, extension of trinucleotide microsatellite sequences has been associated with several severe human disorders, such as Fragile X syndrome and Huntington's disease. Rare alleles of a minisatellite sequence have been reported to be associated with the ras oncogene leading to an increased risk for several human cancers. A dynamic behavior of repeated DNA sequences also applies to telomeres, constituting the ends of the chromosomes. Repeated DNA sequences protect the chromosome ends from losing coding sequences at cell divisions. The telomeres are maintained by the enzyme telomerase. Somatic cells, however, lose telomerase function and gradually die. Cancer cells have activated telomerase and therefore they acquire immortality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.