Abstract

We investigate, by means of laboratory analogues, the fluid dynamics of magma hybridisation caused by the intrusion of felsic magma into a mafic magma chamber. The ‘input’ felsic magma is modelled by a cold, low density fluid and the ‘resident’ mafic magma by a layer of fluid wax close to its solidification point. The cold, rising input drives convection and solidification in the resident fluid, and the solidification causes significant perturbations to an otherwise simple input flow, greatly enhancing mixing and mingling between the two model magmas. The dimensionless parameters controlling the evolution of the system are determined and different morphologies of the solid mass fit into clearly defined fields in the parameter space. The most important implication of the experiments is that the freezing of mafic chambers due to felsic intrusion may give rise to intense hybridization of large volumes of magma. This potentially important mechanism for hybridization has, to date, received little attention in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.