Abstract
AbstractThe polymict Kaidun microbreccia contains lithologies of C‐type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB‐TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe‐rich pyrrhotite with nonintegral vacancy superstructures (NC‐pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe‐Ni‐S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100–300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S‐enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe‐poor, monoclinic 4C‐pyrrhotite and NC‐pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe‐poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.