Abstract

Sadiman volcano is located in the Crater Highlands area of northern Tanzania, which lies next to the western escarpment of the Gregory rift—a part of the eastern branch of the East African Rift system. It consists of interlayered phonolitic tuffs, tuff breccias (with blocks of nephelinites) and nephelinitic lava flows. Rare xenoliths of phonolite lava and ijolite were observed within the nephelinite lavas with ijolite blocks occurring in phonolitic tuffs. No evidence for the presence of melilite-bearing and/or carbonatitic rocks was found during this study. On the basis of petrography, mineralogy and geochemistry the nephelinites are divided into highly porphyritic nephelinite, wollastonite nephelinite and phonolitic nephelinite, the latter of which is the dominant variety at Sadiman. Nepheline+clinopyroxene+titanite±perovskite±andradite–schorlomite±wollastonite±sanidine±sodalite are the principle pheno- and microphenocryst phases. The nephelinites are highly evolved (Mg#=0.17–0.26) alkaline to peralkaline (AI=0.88–1.21) rocks enriched in incompatible elements such as Rb, Ba, Th, U, Nb, Pb, Ta, Sr and light REEs, and strongly depleted in P and Ti. This suggests derivation from an enriched mantle source and fractionation of apatite and Ti-rich mineral(s). Primary melt inclusions in nepheline phenocrysts (Thomogenization=860–1100°C) indicate enrichment of volatile components in the melts, particularly of fluorine (up to 1.8wt.% in silicate glass) resulting in the formation of daughter fluorite in partly and complete crystallized inclusions. The Sadiman nephelinites crystallized under relatively oxidizing conditions (above the FMQ buffer), which differ from the reducing conditions reported for trachytic and pantelleritic rocks from other parts of the Gregory rift. Similar rock types and relatively oxidizing conditions are known from Oldoinyo Lengai and other localities, all of which are closely associated with carbonatites. By analogy, we conclude that andradite–schorlomite-rich nephelinites may indicate a pre-stage on the evolutionary path towards carbonatitic magmatism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.