Abstract
Mid-ocean ridge hydrothermal venting creates sulfide deposits containing gradients in mineralogy, fluid chemistry, and temperature. Even when hydrothermal circulation ceases, sulfides are known to host microbial communities. The relationship between mineralogy and microbial community composition in low-temperature, rock-hosted systems has not been resolved at any spatial scale, local or global. To examine the hypothesis that geochemistry of seafloor deposits is a dominant parameter driving environmental pressure for bacterial communities at low-temperature, the shared community membership, richness, and structure was measured using 16S rRNA gene sequences. The focus of the study was on hydrothermally inactive seafloor deposits from multiple locations within one deposit (e.g., single extinct chimney), within one vent field (intra-vent field), and among globally distributed vent fields from three ocean basins (inter-vent field). Distinct mineral substrates, such as hydrothermally inactive sulfides versus basalts, host different communities at low temperature in spite of close geographic proximity and contact with the same hydrothermally influenced deep-sea water. Furthermore, bacterial communities inhabiting hydrothermally inactive sulfide deposits from geographically distant locations cluster together in community cladograms to the exclusion of other deep-sea substrates and settings. From this study, we conclude that at low temperature, mineralogy was a more important variable determining microbial community composition than geographic factors. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.