Abstract

Shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–660 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Electron microprobe survey found both colloidal iron–arsenic-phases without sulphur and arsenian pyrite in tailings and sites to which tailings had dispersed, but only arsenopyrite in sediments affected by artisanal mining. Antimony in tailings was present as antimony oxides, colloidal iron–antimony phases, colloidal iron–antimony phases, and stibnite in sediments affected by both types of mining. A sequential extraction found that 2% of arsenic held in tailings and tailings-contaminated sediments was exchangeable, 20–30% was labile, including weakly adsorbed, carbonate- and arsenate bound, 20–30% was metastable, probably incorporated into iron or manganese oxyhydroxides, or strongly adsorbed to silicate minerals, and 40–48% was relatively insoluble, probably incorporated into sulphides or silicates. Arsenic in sediments affected by artisanal gold mining was 75–95% relatively insoluble. Antimony in all sediments was >90% relatively insoluble. Relative solubility patterns of most other metals did not differ between industrial tailings-affected, artisanal-mining affected areas, and fluvial sediments. Results suggest that submarine tailings disposal is not suitable for refractory Carlin-like gold deposits because ore processing converts arsenic to forms unstable in anoxic marine sediments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call