Abstract

Rabaul caldera is a large volcanic depression at the north-east tip of New Britain, Papua New Guinea. The lavas range in composition from basalt to rhyolite and have a calc-alkalic affinity but also display features typical of tholeiites, including moderate absolute iron enrichment in flows cropping out around the caldera. The basalts contain phenocrysts of plagioclase and clinopyroxene with less abundant olivine and titanomagnetite. In the basaltic andesites olivine is rare, while orthopyroxene and titanomagnetite are common along with plagioclase and clinopyroxene. Orthopyroxene is also found mantling olivine in some of the basalts while in both rock types pigeonitic augite is a fairly common constituent of the groundmass. Plagioclase in both basalt and basaltic andesite often exhibits sieve texture and analysis of the glass blebs show them to be of similar composition to the bulk rock. Phenocrystic clinopyroxene is a diopsidic augite in both basalt and basaltic andesite. Al2O3 content of the clinopyroxene is moderately high (∼4%) and often shows considerable variation in any one grain. Calculations show that the microphenocrysts probably crystallised near the surface, while phenocrysts crystallised at around 7 kb (21 km). Neither the basalts nor the basaltic andesites would have been in equilibrium at any geologically reasonable P and T with quartz eclogite. Equilibration between mantle peridotite and a. typical Rabaul basaltic liquid could have occurred around 35 kb and 1270 °C. A basaltic andesite liquid yields a temperature of 1263 °C and a pressure of 28 kb for equilibration with mantle peridotite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call