Abstract
Clay mineralogy and geochemical studies were carried out on sandstone and shale samples collected from the Sierra San José section of the Morita Formation to infer the paleoclimate and paleoweathering conditions that prevailed in the source region during the deposition of these sediments. The clay mineral assemblages (fraction < 2 μm) of the Sierra San José section are composed of chlorite and illite. The abundance of illite and chlorite in the studied samples suggest that the physical weathering conditions were dominant over chemical weathering. Additionally, the illite and chlorite assemblages reflect arid or semi-arid climatic conditions in the source regions. K2O/Al2O3 ratio of shales vary between 0.15 and 0.26, which lie in the range of values for clay minerals, particularly illite composition. Likewise, sandstones vary between 0.06 and 0.13, suggesting that the clay minerals are mostly kaolinte and illite types. On the chondrite-normalized diagrams, sandstone and shale samples show enriched light rare earth elements (LREE), flat heavy rare earth elements (HREE) patterns and negative Eu anomalies. The CIA and PIA values and A-CN-K plot of shales indicate low to moderate degree of weathering in the source regions. However, the sandstones have moderate to high values of CIA and PIA suggesting a moderate to intense weathering in the source regions. The SiO2/Al2O3 ratios, bivariate and ternary plots, discriminant function diagram and elemental ratios indicate the felsic source rocks for sandstone and shale of the Morita Formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.