Abstract
The Changjiang U ore field developed typical granite-related U mineralization in the Zhuguangshan complex, China. Pitchblende is the most important ore mineral in these mineralizations. In this study, the mineralogy and geochemistry of pitchblende were investigated by electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) to identify the genesis of the Changjiang U ore field. Pitchblende exhibits colloidal, fragmented, spherulitic and fine-grained crystals in U ores. Its geochemical compositions are similar to those of other granite-related U deposits in South China, which have elevated contents of U, Sr, As and W; low contents of Pb, Th, Zr, Nb, Ta, Hf, Co, Ni and rare earth elements (REEs); and variable amounts of Ca, Si, Bi, Y, V and Zn. These geochemical signatures suggest that mineralization occurred through hydrothermal genesis and that the hosting Youdong and Changjiang granites acted as the dominant U sources. The uraninite in these granites might be the major U source mineral. Uranium mineralization occurred under the following conditions: low temperature (<250°C), low oxygen fugacity (log fO2=-29.5 - -25.5), weakly acidic (pH=5.3-5.9), high CO32- and F- contents and a silicon-saturated solution. Rapid changes in the physicochemical conditions of the ore-forming fluid are responsible for the precipitation of pitchblende. Combined with previous studies, we propose that U-rich granites, Cretaceous-Tertiary crustal extensions, regional faults and hydrothermal alterations were the critical factors for U formation in the Changjiang ore field.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.