Abstract

We report here detailed analytical scanning and transmission electron microscopic investigations on an olivine-dominated dust particle (RB-QD04-0042) from the surface of asteroid 25143 Itokawa. The dust particle was returned to Earth by the Hayabusa spacecraft and was made available in the context of the first announcement of opportunity for Hayabusa sample investigation. Multiple thin slices were prepared from the precious particle by means of focused ion beam thinning, providing a unique three-dimensional access to its interior. The 40 × 50 μm sized olivine particle contains a spherical diopside inclusion and an intimate intergrowth of troilite and tetrataenite. The compositions of olivine (Fo69Fa31) and diopside (En48Wo42Fs10), as well as the high Ni content of the sulfide-metal alloy, indicate a LL ordinary chondrite origin in accord with previous classifications. Although no impact crater exists at the surface of RB-QD04-0042, transmission electron microscopy revealed the presence of various shock defects in constituent minerals. These defects are planar fractures and [001] screw dislocations in olivine, multiple {101} deformation twins in tetrataenite and basal (0001) stacking faults in troilite. These diagnostic shock indicators occur only in a small zone on one concave side of the dust particle characterized by a high fracture density. These observations can be explained by a collisional event that spalled off material from the particle's surface. Alternatively, the dust particle itself could be a spallation fragment of an impact into a larger regolith target. This suggests that Itokawa dust particles lacking visible microcraters on their surfaces might have still experienced shock metamorphism and were involved in collisional fragmentation that resulted in the formation of regolith.

Highlights

  • We report here detailed analytical scanning and transmission electron microscopic investigations on an olivine-dominated dust particle (RB-QD04-0042) from the surface of asteroid 25143 Itokawa

  • We report here detailed scanning (SEM) and transmission electron microscopic (TEM) investigations of Hayabusa sample RB-QD04-0042, which was originally described to be mainly composed of olivine

  • This study reports the detailed investigation of a precious Hayabusa dust particle (RB-QD04-0042) from asteroid Itokawa using sophisticated SEM-focused ion beam (FIB) preparation and subsequent TEM characterization

Read more

Summary

Introduction

We report here detailed analytical scanning and transmission electron microscopic investigations on an olivine-dominated dust particle (RB-QD04-0042) from the surface of asteroid 25143 Itokawa. No impact crater exists at the surface of RB-QD04-0042, transmission electron microscopy revealed the presence of various shock defects in constituent minerals. These defects are planar fractures and [001] screw dislocations in olivine, multiple {101} deformation twins in tetrataenite and basal (0001) stacking faults in troilite. These diagnostic shock indicators occur only in a small zone on one concave side of the dust particle characterized by a high fracture density. This suggests that Itokawa dust particles lacking visible microcraters on their surfaces might have still experienced shock metamorphism and were involved in collisional fragmentation that resulted in the formation of regolith

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.