Abstract

Research subject. Mineral associations, their chemical composition, and formation conditions of metasomatic rocks of the Voznesenskoye gold deposit located in the area of the Main Ural Fault in the Southern Urals.Methods. The chemical composition of minerals was studied using a Tescan Vega Compact scanning electron microscope equipped with an Oxford Instruments Xplorer 15 energy-dispersive analyzer. The formation P-T parameters were estimated using a chlorite geothermometer and a dolomite-calcite geothermobarometer.Results and conclusions. Two types of metasomatic rocks were identified: 1) propylites, which make up the outer zones of the metasomatic aureole, and 2) beresite-listvenites, common in its inner parts and hosting gold mineralization. The main propylite minerals were amphibole, orthoclase, albite, and ripidolite. Amphibole is represented by two generations, with the early generation comprising magnesian and actinolite hornblende and the late generation comprising actinolite. The crystallization temperature of ripidolite (307–313°С) corresponds to the temperature range of formation of propylites of the albite-actinolite facies. Beresite-listvenites (association: quartz, albite, chlorite, white mica, and carbonate) were formed at a temperature of 255–338°C and a pressure of 0.48–0.72 kbar. Gold ore mineralization was concentrated in the highest temperature zones of the halo of beresite-listvenite alterations. Such temperature conditions existed in dikes and their exocontact zones disturbed by ruptures. Light mica in beresite-listvenites is represented by sericite and phengite, and carbonate is a paragenesis of calcite and dolomite-ankerite. According to the composition and formation period, chlorite is differentiated into early ferruginous ripidolite and late pycnochlorite, depleted in Fe and enriched in Si, which is probably associated with a decrease in temperature during mineral formation and an increase in the activity of sulfide sulfur in the fluid. Along with an increase in the distance from the ore bodies, pycnochlorite exhibits greater contents of Si and lower contents of AlIV. The observed changes in the pycnochlorite composition are related to a decrease in temperature. The research results indicate the formation of the Voznesenskoye deposit under mesothermal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call