Abstract

Felsic intrusions in the Hannan region at the northwestern margin of the Yangtze Block mainly include the ca. 730 Ma adakitic Erliba and Wudumen plutons and the ca. 760 Ma calcic-alkali Xixiang and Tianpinghe bodies. These four intrusions were considered to have been formed by melting of the newly formed lower mafic crust. However, the two generations of granitoids have different lithologies and mineral compositions. Thermobarometry calculations reveal that the Erliba and Wudumen granitoids formed under approximately similar emplacement pressures (2.96–3.11 kbar) and temperatures (787–789°C). The Xixiang emplaced body was intruded at high pressure (˜3.54 kbar) and low temperature (˜676°C), whereas the Tianpinghe pluton solidified at low pressure (˜2.00 kbar) and high temperature (∼747°C). The four intrusions have similar oxygen fugacity ranges near the nickel-nickel oxide buffer, suggesting oxidized parental magmas. The Erliba and Wudumen are estimated to have been generated under pressures higher than 12 kbar, the Xixiang under a pressure of >10 kbar, and the Tianpinghe under a pressure of >6 kbar. Thus, the petrology and geochemical differences among these four felsic intrusions probably mainly resulted from variations of depth and degrees of partial melting. The whole-rock and mineral compositions have arc affinities, suggesting that they were formed in an active continental margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call