Abstract
Abstract: Coal is one of the most available energy sources on earth. The mineralogical and geo-chemical aspects of coals are of prime importance for their utilization. The mineralogical composition, ash chemistry, and ash fusion temperature (AFT) ranges of raw and beneficiated coals are investigated in this paper. Further, the mineral matter transformation during the beneficiation processes viz. by oxidative desulfurization; alkali extraction and ultrasonication along with the relationship of the ash fusion temperature (AFT) ranges with the ash components in the coal are discussed. The major oxides present in the coal and beneficiated coal ashes include Fe2O3, Al2O3, SiO2, CaO, and MgO, which significantly affect the ash fusion temperature ranges. Initial deformation temperature (IDT) changes with the ash components and, increases with the increase in the Fe2O3 content in coal ash. With increasing concentrations of both Al2O3 and SiO2, the initial deformation temperature (IDT) also increases. The increasing and decreasing nature of the initial deformation temperature (IDT) observed is also dependent upon the CaO and MgO contents. XRD analysis of the coal samples revealed significant changes in mineral matter contents with the types of beneficiation processes adopted for coal. The minerals like chlorite, illite, montmorillonite, pyrite, calcite, aragonite, and alumina have been removed during the beneficiation processes. The FTIR spectra also indicate the presence of minerals like gypsum (G), calcite (C) aragonite (Ar), quartz (Q) and kaolinite (K) in the raw coal and their subsequent removal after the beneficiation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.