Abstract

The Camarasa Dam was built in 1920 using dolomitic aggregate and Portland cement with two different compositions: type A (dolomite and Portland cement) and type B (dolomite and sand-cement). The sand cement was a finely powdered mixture of dolomite particles and clinker of Portland cement. The mineralogy of concrete was studied by optical microscopy, scanning electron microscopy, and x-ray powder diffraction. Reaction of dedolomitization occurred in the two types of concrete of the Camarasa Dam, as demonstrated by the occurrence of calcite, brucite, and/or absence of portlandite. In the type A concrete, calcite, brucite, and a serpentine-group mineral precipitated as a rim around the dolomite grains and in the paste. The rims, a product of the dedolomitization reaction, protected the surface of dolomite from the dissolution process. In type B concrete, in addition to dolomite and calcite, quartz and K-feldspar were present. Brucite occurred in lower amounts than in the type A concrete as fibrous crystals randomly distributed in the sand-cement paste. Although brucite content was higher in the type A concrete, type B showed more signs of loss of durability. This can be attributed to the further development of the alkali-silica reaction in this concrete type.

Highlights

  • Concrete made of dolomite aggregate, has been the source of problems such as expansion and cracking [1,2,3,4,5,6,7]

  • These deterioration problems were associated with the alkali-carbonate reaction (ACR) [8,9], which is produced when dolomitic rocks with clay minerals are used as aggregates or as a result of the reaction of dolomite with cryptocrystalline quartz [10]

  • The concrete of the Camarasa Dam is made of aggregates mainly composed of dolomite

Read more

Summary

Introduction

Concrete made of dolomite aggregate, has been the source of problems such as expansion and cracking [1,2,3,4,5,6,7] These deterioration problems were associated with the alkali-carbonate reaction (ACR) [8,9], which is produced when dolomitic rocks with clay minerals are used as aggregates or as a result of the reaction of dolomite with cryptocrystalline quartz [10]. Dolomite reacts with the portlandite of the cement paste to produce calcite and brucite The kinetics of this reaction have been studied in different alkaline media, temperatures, and silica content [13,14,15,16].

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call