Abstract
AbstractThe Egyptian black sands contain several economic minerals, such as ilmenite, magnetite, garnet, zircon, rutile and monazite. During the concentration and separation of a high‐grade rutile concentrate a bulk magnetic fraction is obtained. This fraction is composed mainly of opaques, titanhematite, ilmenite–titanhematite exsolved intergrown grains, magnetic leucoxene in addition to chromite, and magnetic rutile. The magnetic rutile occupies 6 wt.% of the bulk magnetic fraction or approx. 4 wt.% of the original rutile content in the raw sands. Most of magnetic rutile crystals are contaminated with opaque inclusions, staining‐coating and/or composite locked grains. This magnetic rutile has a magnetic range from strongly paramagnetic to very weak paramagnetic. Electron microprobe analysis for twenty‐three magnetic rutile grains identified mineral components of rutile, titanhematite, pseudorutile, leached pseudorutile and ilmenite in decreasing order of abundance. Some other inclusions are also detected in the different magnetic rutile grains. They are most probably garnet, silica, amphibole, ilmenite, feldspar, mica and zircon. The presence of these inclusions reflect the derivation of magnetic rutile of various crystalline igneous and metamorphic rocks. The magnetic susceptibility of magnetic rutile depends on the associated mineral components and their relative volumes in comparison to the rutile mineral component. Magnetic susceptibility of magnetic rutile is also related to both type and size of the associated mineral inclusions. The average chemical composition of the magnetic rutile is 66.34 wt.% TiO2, 21.71 wt.% Fe2O3, 6.39 wt.% SiO2, 1.80 wt.% Al2O3, 1.19 wt.% CaO and 0.10 wt.% Cr2O3. Thus, the contamination of magnetic rutile in the non‐magnetic rutile concentrate would decrease the market value of the rutile concentrate. Alternatively these magnetic rutile grains are recommended to be blended with magnetic leucoxene or some types of ilmenite concentrate to improve the overall marketable specifications especially for both of Ti, Fe and Cr contents.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.