Abstract

After being subjected to geometallurgical evaluation, the iron ores from Singhbhum Bonai-Keonjhar region, eastern India, have been designated as dense martite microplaty hematite high-strength ore (dM-mH-hs ore), massive dense martite microplaty hematite high-strength ore (mdM-mH-hs ore), schistose microplaty hematite low-strength ore (smH-ls ore), microplaty hematite powdery ore (mH-p ore), vitreous goethitic ore (vG ore), and ochreous goethitic ore (oG ore) end members, with varied strengths attributed to the microporosity levels. The first four variants form typical high-grade run-of-mines (ROMs) (hard, soft and powdery iron ore variants, e.g., ROM-HIO, ROM-SSIO, and ROM-PBD, respectively) with better amenability to beneficiation. In contrast, oG and vG ore end members form ROM lateritic iron ore (ROM-LIO) with poor amenability to beneficiation, having relatively higher concentrates of alumina (~3–6 wt%) due to the complex mineral chemistry of goethite and altered hematite. Banded hematite jasper (BHJ) is a very low-grade siliceous end member. In a mining operation, the ROMs may have the attributes of several combinations of the above-stated end members and ROM variants. The designated end members present in the ROMs determine their liberation, mineralogical processes, geometallurgical characteristics, amenability to beneficiation, product grade and recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call