Abstract

We conducted hydrothermal flow-through experiments at 430 °C and 31 MPa to investigate the mechanism of silica precipitation on granite under crustal conditions. Two experiments were performed using different input solutions: a single-component Si solution, and a multi-component solution with minor Al, Na, and K. The degree of supersaturation with respect to quartz, Ω = CSi/CSi,Qtz,eq, where CSi and CSi,Qtz,eq indicate Si concentration in solutions and the solubility of quartz within water, respectively, decreased from 3–3.5 to <1.1 along the flow path. A variety of silica minerals formed during the experiments (opal-A, opal-C, chalcedony, and quartz), and their occurrences and modal abundances changed in response to Ω and the presence of additives in the solution. For near-equilibrium solutions (Ω ∼1.2), silica minerals were deposited on other surfaces in addition to quartz. In the single-component experiment, the dominant silica minerals changed in the order of opal-A → opal-C → quartz with decreasing Si concentration along the flow path. In contrast, in the multi-component experiment, quartz and minor chalcedony formed throughout the entire reaction vessel. This finding indicates that impurities (Na, K, and Al) in the solutions inhibited the precipitation of opal and enhanced the direct nucleation of quartz. The systematic appearance of metastable silica minerals were examined by nucleation processes and macroscopic precipitation kinetics. Our experimental results indicate that different precipitation mechanisms yield contrasting textures, which in turn suggests that vein textures can be used as indicators of solution chemistry within the fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call