Abstract

This work is aimed at developing and interpreting infrared albedo, pyroxene and OH band depths, and pyroxene band center maps of Vesta’s Gegania and Lucaria quadrangles, obtained from data provided by the Visible and InfraRed (VIR) mapper spectrometer on board NASA’s Dawn spacecraft.The Gegania and Lucaria quadrangles span latitudes from 22°S to 22°N and longitudes from 0°E to 144°E. The mineralogical and spectral maps identify two large-scale units on this area of Vesta, which extend eastwards and westward of about 60°E, respectively. The two regions are not associated to large-scale geological units, which have a latitudinal distribution rather than longitudinal, but are defined by different contents of carbonaceous chondrites (CC): the eastern region, poor in CCs, is brighter and OH-depleted, whereas the western one, rich in CCs, is darker and OH-enriched.A detailed analysis of the small-scale units in these quadrangles is also performed. Almost all the units show the typical correspondence between high albedo, deep pyroxene bands, short band centers and absence of OH and vice versa. Only a few exceptions occur, such as the ejecta from the Aelia crater, where dark and bright materials are intimately mixed.The most characteristic features of these quadrangles are the equatorial troughs and the Lucaria tholus.The equatorial troughs consist of graben, i.e. a depression limited by two conjugate faults. The graben do not present their own spectral signatures, but spectral parameters similar to their surroundings, in agreement to their structural origin. This is observed also in graben outside the Gegania and Lucaria quadrangles. However, it is possible to observe other structural features, such as tectonic grooves, characterized by a changing composition and hence an albedo variation. This result is confirmed not only by mineralogical maps of Vesta, but also by analyzing the VIRTIS-Rosetta observations of Lutetia. The albedo change is instead a typical behavior of geomorphic grooves. Finally, ridges are characterized by a bluer color and, in some cases, shorter band centers than their surroundings, suggesting that they are composed of fresher materials.We also performed a comparative analysis between the three tholi of Vesta, i.e. Lucaria (which gives the name to its quadrangle), Aricia (in the Marcia quadrangle) and Brumalia (Numisia quadrangle). Whereas Brumalia tholus is a young magmatic intrusion, the absence of diogenites, the low albedo, and the orientation of Aricia and Lucaria tholi suggest that they are older features, which are covered by dark materials and therefore experienced a different geological history than Brumalia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call