Abstract
In this study, Hapke's radiative transfer model is used to verify the feasibility of retrieving the composition and grain-size of the ground in an open-pit mine, seen as a regolith. Such a tool could be useful for dust surveys and thus preventing potential environmental risks such as acid mine drainage. As the true compositional endmembers of the medium are not retrieved but rather chosen from spectral libraries and the range of grain sizes (a few to hundreds of micrometers) and porosities (0.22 to 0.52 for the filling factor) vary greatly in an open-pit mine, we show that the mineralogical unmixing results are not reliable. Too many combinations of different relative abundances, grain sizes and porosities lead to fits between modelled and measured spectra under 0.3% in reflectance. To tackle this issue, we explore a lithological unmixing approach. Considering lithologies as endmembers, as opposed to considering minerals, reduces the variability in the solutions as fewer endmembers are used. The results show that the studied samples with multi-component grains behave spectrally as expected for mono-mineral grains. With no root mean square errors higher than 5%, the relative abundances retrieved are sufficiently precise to consider mapping lithologies with this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.