Abstract

Mineralogical and geochemical investigation of altered host rock samples from the Logatchev hydrothermal field reveal a large variety of alteration styles at this site. Serpentinization is most intense in former harzburgites and dunites varying between 90–95%, whereas gabbros are mostly rather fresh. A combination of serpentinization, interaction with hot hydrothermal fluids, melt/rock interaction, and low-temperature seafloor weathering lead to significant gains and losses of major and trace elements. Serpentinization within the Logatchev hydrothermal field proceeds mainly isochemical for the major elements, except for a loss of TiO 2 and CaO. However, the concentration of the trace elements Cu, Nb, Ba, La, Sm, Eu, Th or U increases significantly in the serpentinites. Gabbroic intrusions act as a sink for MgO during alteration due to the formation of chlorite and serpentine after clinopyroxene. Interaction between gabbros and hydrothermal fluids leads to significant redistribution of SiO 2, TiO 2, CaO, and Na 2O as well as numerous trace elements. The different styles of alteration and their associated element changes reveal that samples from the entire Logatchev field have been influenced by hydrothermal fluids to some degree. Therefore, the hydrothermal fluid-dominated alteration of the ultramafic oceanic crust is a sink for many trace elements which were provided by mafic intrusions and mobilized by hydrothermal fluids and melt-rock interaction, whereas the gabbros accumulate high amounts of Mg from the seawater. Summarized the alteration processes at Logatchev are a combination of serpentinization, melt/rock interaction of serpentinites and mafic intrusions, and low-temperature seafloor weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.