Abstract

Inflammation of the dorsal root ganglia (DRG) may contribute to low back pain, postherpetic neuralgia, and neuropathic pain. The mineralocorticoid receptor (MR) plays a proinflammatory role in many nonrenal tissues, but its role in peripheral pain at the DRG level is not well studied. Local inflammation of the L5 DRG with the immune activator zymosan rapidly leads to mechanical hypersensitivity and increased excitability of sensory neurons. Using this pain model, the authors applied the MR antagonist eplerenone locally to the inflamed DRG. Excitability of small-diameter sensory neurons was examined in acute primary culture by using patch clamp techniques. Local eplerenone significantly reduced the mechanical hypersensitivity and shortened its duration. The same dose was ineffective systemically. Immunohistochemical studies showed the MR was present in most neurons and rapidly translocated to the nucleus 1 day after local DRG inflammation. Activation of satellite glia (defined by expression of glial fibrillary acidic protein) in the inflamed DRG was also reduced by local eplerenone. Increased excitability of small-diameter sensory neurons 1 day after inflammation could be observed in vitro. Eplerenone applied in vitro (8-12 h) could reverse this increased excitability. Eplerenone had no effect in neurons isolated from normal, uninflamed DRG. The MR agonist aldosterone (10 nM) applied in vitro increased excitability of neurons isolated from normal DRG. The MR may have a pronociceptive role in the DRG. Some of its effects may be mediated by neuronal MR. The MR may represent a novel therapeutic target in some pain syndromes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call