Abstract
It has great significance to investigate the degradation of aromatic contaminants as they are highly carcinogenic and nondegradable pollutants in drinking water. In this paper, the mineralization orders of the representative nitro/chloro/methyl/amino-aromatic contaminants with oxidants (·OH, H2O2, ·O−, O2,O3) in advanced oxidation processes (AOPs) are investigated based on the calculated standard molar Gibbs free energy changes of reaction (ΔrGm0) and the results are consistent with those from previous experimental results, electrophilic substitution orientation rules of the Hammett equation, and predicted results with a quantitative structure−activity relationship (QSAR). In addition, the quantitative function relationship between the degradation rate (r) of the aromatic contaminants and the thermodynamic driving force (ΔrGm0) is analyzed in order to investigate the degradation kinetics more rigorously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.