Abstract

There has been great interest in developing cost-effective and high-performance catalysts for the ozonation treatment of biologically refractory wastewaters. This study developed a novel copper-cerium oxide supported alumina (Cu-Ce/Al2O3) catalyst for the catalytic ozonation of pulp and paper mill wastewater. The evenly distributed composite metal oxides on the surface of catalysts evidently improved the catalytic degradation efficiency. The Cu-Ce/Al2O3/O3 process increased the total organic carbon (TOC) removal by 6.5%, 9.5%, 24.5%, and 35.5%, compared with Ce/Al2O3/O3, Cu/Al2O3/O3, Al2O3/O3, and ozone alone processes, respectively. The enhanced catalytic ozonation efficiency was mainly ascribed to an increased hydroxyl radical (·OH)-mediated ozonation, both in the bulk solution and on the surface of catalysts. The surface hydroxyl groups (-OHs) of Al2O3 along with the deposited Cu-Ce oxides greatly enhanced the catalytic performance. This work illustrated potential applications of Cu-Ce/Al2O3 catalyzed ozonation for the advanced treatment of biologically recalcitrant wastewaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.