Abstract

Biomimetic nanocomposite scaffolds were fabricated by electrospinning poly(l-lactic acid) and a blend of poly(L-lactic acid)/gelatin to eliminate the use of collagen. The scaffolds were mineralized via alternate soaking in calcium and phosphate solutions, whereby 66.8% nanohydroxyapatite formation was successfully induced which is similar to that of native human bone (60%). The poly(L-lactic acid)/gelatin scaffolds had uniform nanohydroxyapatite formation throughout the scaffold. The mineralization enhanced the tensile modulus and tensile strength without increasing the brittleness. The in vitro biocompatibility of scaffolds was evaluated with murine adipose tissue–derived stem cells. The scaffolds with nanohydroxyapatite aided cell attachment and promoted cell–cell interaction. The mineralization and osteocalcin expression of the murine adipose tissue–derived stem cells were maximum in the poly(L-lactic acid)/gelatin/nanohydroxyapatite scaffold. Therefore, the gelatin and nanohydroxyapatite in poly(L-lactic acid)/gelatin/nanohydroxyapatite scaffolds provided cues for the differentiation of murine adipose tissue–derived stem cells. The biochemical nature of poly(L-lactic acid)/gelatin/nanohydroxyapatite scaffold accelerated osteogenic differentiation and could be a potential candidate for bone regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call