Abstract

It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). † † Experimental studies of hypokinetic physiology are generally based on the assumption that diminished muscular activity (progressive reduction of number of steps per day) is detrimental to animal and human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect. Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19–24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7–9% and 5–7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P < 0.01 in both groups of men. A comparison between bone density changes in the control and experimental groups of men failed to demonstrate significant differences. It was concluded that the level of mineralization of bone tissues decreased under hypokinesia and physical exercise with calcium supplements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.