Abstract

Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.