Abstract

The fundamental mechanisms that govern bone mineralization have been fairly well evidenced by means of experimental research. However, rules for the evolution of the volume and composition of the bone tissue compartments (such as the mineralized collagen fibrils and the extrafibrillar space in between) have not been provided yet. As an original contribution to this open question, we here test whether mineralizing bone tissue can be represented as a thermodynamically closed system, where crystals precipitate from an ionic solution, while the masses of the fibrillar and extrafibrillar bone tissue compartments are preserved. When translating, based on various experimental and theoretical findings, this mass conservation proposition into diffraction–mass density relations, the latter are remarkably well confirmed by independent experimental data from various sources. Resulting shrinkage and composition rules are deemed beneficial for further progress in bone materials science and biomedical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.