Abstract

Mineral sepiolite as inorganic carrier, lauric acid(LA)-stearic acid(SA)as binary PCM(phase change material), CTAB as modifier, ethanol as solvent, mineral energy storage residential composite was prepared by intercalation, and the properties of composites were characterized using thermogravimetry(TG)/differential thermal analysis(DTA),scanning electron microscope(SEM),X-ray diffraction(XRD).Orthogo-nal experimental results show that the optimum proportion of composite materials is A3B2C1D3, the initial phase change temperature is 31.44 °C, phase transition peak temperature is 35.25°C, a wide range of endothermic peak is between 30.0~40.0°C, scope of phase change temperature is 3.81. LA-SA eutectic mixture could be retained by adding into 42.3 wt% porous sepiolite, treated at 80 °C. The weight loss of the composites is no more than 2% when melting/freezing cycling within 100°C, so it has good thermal reliability when applied to building material. Mainly due to relatively high content of mineral impurity, high temperature and CTAB can significantly help improve adsorption rate of mineral sepiolite. Sepiolite as a carrier material has features with low cost, broad sources, non-toxic and non-pollution. The composite material is a healthy residential energy-saving material, and it provides a good prospect for the realization of building energy efficiency, regulating room temperature in summer, and improving human comfort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.