Abstract

Hydraulic fracturing for gas production is now ubiquitous in shale plays, but relatively little is known about shale-hydraulic fracturing fluid (HFF) reactions within the reservoir. To investigate reactions during the shut-in period of hydraulic fracturing, experiments were conducted flowing different HFFs through fractured Marcellus shale cores at reservoir temperature and pressure (66 °C, 20 MPa) for one week. Results indicate HFFs with hydrochloric acid cause substantial dissolution of carbonate minerals, as expected, increasing effective fracture volume (fracture volume + near-fracture matrix porosity) by 56-65%. HFFs with reused produced water composition cause precipitation of secondary minerals, particularly barite, decreasing effective fracture volume by 1-3%. Barite precipitation occurs despite the presence of antiscalants in experiments with and without shale contact and is driven in part by addition of dissolved sulfate from the decomposition of persulfate breakers in HFF at reservoir conditions. The overall effect of mineral changes on the reservoir has yet to be quantified, but the significant amount of barite scale formed by HFFs with reused produced water composition could reduce effective fracture volume. Further study is required to extrapolate experimental results to reservoir-scale and to explore the effect that mineral changes from HFF interaction with shale might have on gas production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call