Abstract

Not all mineral oil metalworking fluids (MWFs) in common use form stable airborne mists which can be sampled quantitatively onto a filter. This much has been known for some time but no simple method of identifying oils too volatile for customary filter sampling has been developed. Past work was reviewed and experiments were done to select simple criteria which would enable such oils to be identified. The sampling efficiency for a range of commercial mineral oil MWF were assessed by drawing clean air through spiked filters at 2 l. min−1 for periods up to 6 h before analysis. The physical properties of MWF are governed by their composition and kinematic viscosity was found to be the most practical and easily available index of the potential for sample loss from the filter. Oils with viscosities greater that 18 cSt (at 40°C) lost less than 5% of their weight, whereas those with viscosities less than 18 cSt gave losses up to 71%. The losses from the MWF were mostly aliphatic hydrocarbons (C10–C18), but additives such as alkyl benzenes, esters, phenols and terpene odorants were also lost. The main recommendation to arise from the work is that filter sampling can be performed on mineral oils with viscosities of 18 cSt (at 40°C) or more with little evaporative losses from the filter. However, sampling oils with viscosities less than 18 cSt will produce results which may significantly underestimate the true value. Over a quarter of UK mineral oil MWFs are formulated from mineral oils with viscosities less than 18 cSt (at 40°C). The problem of exposure under-estimation and inappropriate exposure sampling could be widespread. Further work is being done on measurement of mixed phase mineral oil mist exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call