Abstract
WorldView commercial imaging satellites comprise a constellation developed by DigitalGlobe Inc. (Longmont, CO, USA). Worldview-3 (WV-3), currently planned for launch in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR), and an additional 8 bands in the Short-Wave-Infrared (SWIR); the approximately 1.0–2.5 μm spectral range. WV-3 will be the first commercial system with both high spatial resolution and multispectral SWIR capability. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data collected at 3 m spatial resolution with 86 SWIR bands having 10 nm spectral resolution were used to simulate the new WV-3 SWIR data. AVIRIS data were converted to reflectance, geographically registered, and resized to the proposed 3.7 and 7.5 m spatial resolutions. WV-3 SWIR band pass functions were used to spectrally resample the data to the proposed 8 SWIR bands. Characteristic reflectance signatures extracted from the data for known mineral locations (endmembers) were used to map spatial locations of specific minerals. The WV-3 results, when compared to spectral mapping using the full AVIRIS SWIR dataset, illustrate that the WV-3 spectral bands should permit identification and mapping of some key minerals, however, minerals with similar spectral features may be confused and will not be mapped with the same detail as using hyperspectral systems. The high spatial resolution should provide detailed mapping of complex alteration mineral patterns not achievable by current multispectral systems. The WV-3 simulation results are promising and indicate that this sensor will be a significant tool for geologic remote sensing.
Highlights
WorldView imaging satellites comprise a planned constellation of commercial, orbiting platforms developed by DigitalGlobe Inc. (Longmont, CO, USA) and built by Ball Aerospace & Technologies (Boulder, CO, USA)
This paper summarizes mineral mapping results achieved by modeling the proposed WV-3 SWIR spectral bands shown in Figure 1 using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), extraction of SWIR spectral signatures and spectral mapping, and comparison to results from NASA’s on-orbit
Mineral reflectance spectra of key minerals known to occur at Cuprite at specific locations based on spectral libraries and previous research [7,8,9,10,11,12,13,14] were extracted as regions of interest (ROIs) from the AVIRIS, ASTER, and simulated WV-3 data for use in spectral classification and mineral mapping
Summary
WorldView imaging satellites comprise a planned constellation of commercial, orbiting platforms developed by DigitalGlobe Inc. (Longmont, CO, USA) and built by Ball Aerospace & Technologies (Boulder, CO, USA). With no multispectral bands on board, the primary purpose of this single-band PAN system was to rapidly collect high-spatial resolution (or hi-res) imagery, especially suited for generating detailed digital elevation model (DEM) data. The big milestone was encountered with the launch of WorldView-2 (WV-2) in 2009 offering hi-res PAN data at 46-cm pixel size plus visible and near-infrared (VNIR) bands at 1.85-m spatial resolution [2]. DigitalGlobe plans to launch WorldView-3 (WV-3) in 2014 offering a similar PAN and VNIR band set, complemented by eight short-wave infrared (SWIR). Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral sensor, which has 6 SWIR bands at 30 m resolution [5,6] This simulation and analysis focuses on the WV-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.