Abstract
AbstractIdentifying sandstone images and judging the types of minerals play an important role in oil and gas reservoir exploration and evaluation. Multiple kernel learning (MKL) method has shown high performance in solving some practical applications. While this method belongs to a shallow structure and cannot handle relatively complex problems well. With the development of deep learning in recent years, many researchers have proposed a deep multiple layer multiple kernel learning (DMLMKL) method based on deep structure. While the existing DMLMKL method only considers the deep representation of the data but ignores the shallow representation between the data. Therefore, this paper propose a multiple scale multiple layer multiple kernel learning (MS-DKL) method that “richer” feature data by fusing deep and shallow representations of mineral image features. Mineral recognition results show that MS-DKL algorithm is higher accuracy in mineral recognition than the MKL and DMLMKL methods.KeywordsMineral recognitionDeep kernel learningMultiple scaleSLIC
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.