Abstract
This study aims to determine the optimal N, P, K, Mg and Zn rates for groundnut production on Ferric and Plintic Luvisol in the Sudano-Guinean and Sudanian zones of Benin Republic. Two years (2018 and 2019) experiment was carried out in the municipality of Ouessè in the Sudano-Guinean zone and Bembèrèkè in the Sudanian zone. The tested nutrient doses were N (0, 20 and 40 kg⋅ha−1), P (0, 25 and 50 kg⋅ha−1), K (0, 20 and 40 kg⋅ha−1), Mg (0, 15 and 30 kg⋅ha−1) and Zn (0, 4 and 8 kg⋅ha−1). The Box and Behnken rotating design is used to define the N, P, K, Mg and Zn rate combinations leading to 46 combinations. A completely randomized bloc design was setting up considering farmers as replication. In total, four farmers’ fields were selected. A one-way analysis of variance is carried out on yield data, using the linear mixed-effect model. Response surface analyses were used to determine the optimal doses for each N, P, K, Mg and Zn. Nodule production (6.5 times higher than the control), number of gynophores (2.8 times higher than the control) and root length (19.2 ± 0.2 cm) of groundnut plants were significantly (p = 0.0001) improved with nutrient application. The response surface analysis shows that treatments N-P-K-Mg-Zn of 16.01-20.18-6.70-5.65-2.47 (in the Sudano-Guinean zone) and 13.1-25.07-11.47-0-1.82 (in the Sudanian zone) are the optimal rates that have induced optimal yield of 2.1 t⋅ha−1 (i.e. 2.5 times the yield in the farmers’ field) pod yield and the best return on investment per hectare. Nevertheless, for a sustainable groundnut producproduction, treatment 13.1-25.07-11.47-20-1.82 is suggested as regular K input is required for the respect of the fertilization laws.
Highlights
Groundnut is one of the protein sources widely used for both human and animal nutrition in developing countries [1]
This study aims to determine the optimal N, P, K, Mg and Zn rates for groundnut production on Ferric and Plintic Luvisol in the Sudano-Guinean and Sudanian zones of Benin Republic
The response surface analysis shows that treatments N-P-K-Mg-Zn of 16.01-20.18-6.70-5.65-2.47 and 13.1-25.07-11.47-0-1.82 are the optimal rates that have induced optimal yield of 2.1 t∙ha−1
Summary
Groundnut is one of the protein sources widely used for both human and animal nutrition in developing countries [1]. Leguminous crops represent high economic important crops in the traditional cropping system with a wide ecological adaptability [2]. Through the symbiotic association between legumes and rhizobium bacteria, atmospheric nitrogen is fixed in soil in mineral form [3]. Through this process, legumes improve soil nitrogen stock for the subsequent crops [4] [5]. Some legumes, especially groundnut, contribute to the solubilization of insoluble phosphorus in the soils [6]. Legumes improve the physical environment and soil microbial activity as well as replenishment of soil organic matter stock [7]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.