Abstract

ObjectivesThe objective of this study was to quantify the changes in mineral and selected element concentrations within residual carious dentine and restorative materials following incomplete carious lesion removal (ICLR) using different cavity liners, with non-destructive subtraction 3D-X-ray Microtomography (XMT, QMUL, London, UK). Materials and methodsA total of 126 extracted teeth with deep dental caries were assessed using International Caries Risk and Assessment (ICDAS). Eight teeth were subsequently selected after radiographic evaluation. Each lesion was removed, leaving a thin layer of leathery dentine at the deepest part of cavity. Different cavity lining materials were placed; Mineral Trioxide Aggregate (MTA), calcium hydroxide, (Ca(OH)2), resin-based material (RBM). For each, the restorative material was an encapsulated glass ionomer (GIC) and the control group had a GIC restoration alone. Each tooth was immediately placed in Simulated Body Fluid (SBF). All samples were then imaged using XMT at baseline, and three weeks after treament. The XMT images were then subtracted to show the mineral concentration changes three weeks after treatment. ResultsThere were significant increases in mineral concentrations within the residual demineralised dentine in individual teeth treated with Ca(OH)2, MTA, RBM, and GIC following immersion in SBF for three weeks. GIC group without any liners showed the greatest increase in mineral concentration, followed by MTA and Ca(OH)2. ConclusionMineral changes in demineralised dentine and within restorative materials are quantifiable using non-destructive 3D-XMT subtraction methodology. This laboratory study suggested that calcium, phosphate and strontium ion-exchange occurs with GIC, MTA and Ca(OH)2 in deep dentinal lesions following ICLR. Clinical relevanceIn clinical practice, incomplete carious lesion removal could be performed to avoid the dental pulp exposure. 3D non-destructive XMT subtraction methodology in a laboratory setting is advantageous to provide evidence for different restorative materials on deep carious lesions prior to clinical investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.