Abstract

Mineral dust aerosols impact the energy budget of Earth through interactions with radiation, clouds, atmospheric chemistry, the cryosphere and biogeochemistry. In this Review, we summarize these interactions and assess the resulting impacts of dust, and of changes in dust, on global climate and climate change. The total effect of dust interactions on the global energy budget of Earth — the dust effective radiative effect — is −0.2 ± 0.5 W m−2 (90% confidence interval), suggesting that dust net cools the climate. Global dust mass loading has increased 55 ± 30% since pre-industrial times, driven largely by increases in dust from Asia and North Africa, leading to changes in the energy budget of Earth. Indeed, this increase in dust has produced a global mean effective radiative forcing of −0.07 ± 0.18 W m−2, somewhat counteracting greenhouse warming. Current climate models and climate assessments do not represent the historical increase in dust and thus omit the resulting radiative forcing, biasing climate change projections and assessments of climate sensitivity. Climate model simulations of future changes in dust diverge widely and are very uncertain. Further work is thus needed to constrain the radiative effects of dust on climate and to improve the representation of dust in climate models. Dust influences the global energy budget through various Earth system interactions. This Review outlines these interactions, revealing a total radiative effect of −0.2 ± 0.5 W m−2, which, alongside 55 ± 30% historical increases in dust, have contributed a radiative forcing of −0.07 ± 0.18 W m−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.