Abstract

The mineralogy of the Istala deposit, Gümüşhane, northeastern Turkey, was studied in detail, and a geochemical investigation was carried out using electron probe micro-analysis (EPMA). Sphalerite, galena, chalcopyrite and pyrite are the major sulfide minerals found in the Istala deposit, with minor amounts of bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite. In addition to these, barite and a small quantity of quartz occur as gangue minerals. Based on the textural relations and mineral assemblages, five different stages of crystallization have been recognized. Mineral paragenesis of the first four stages has been found to be similar, whereas clear enrichment has been observed in the modal abundance of the copper sulfide mineral assemblage at the fifth-stage ore formation. Whole-rock geochemical analyses of the Istala ore show an enrichment of Ag content up to 3328ppm. Optical observations and EPMA study indicated that abundant silver mineralization was found in the Istala ore, especially during the later-stage ore deposition. Repetition to the presence of native silver in the samples, a significant amount of silver was incorporated in bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite, whereas a trace amount of silver has been detected in sphalerite, galena, chalcopyrite and pyrite. The homogenization temperatures (Th) of the primary fluid inclusions were measured between 98 and 284°C, with frequency peaks around 140°C, 190°C and 240°C. All data obtained support the theory that later stage copper-rich sulfides, formed under the low temperature conditions, are responsible for the large amounts of silver content in the Istala mine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.