Abstract

Specific metabolic network responses to mineral starvation are not well-defined. We examined a detailed broad-scale identification of metabolic responses of tomato leaf and root to N, P or K starvation. Tomato plants were grown hydroponically under optimal (5 mM N, 0.5 mM P, or 5 mM K) and starved (0.5 mM N, 0.05 mM P, or 0.5 mM K) conditions and metabolites were measured by LC-MS and GC-MS. Overall, the levels of metabolites (lipids, nucleotides, peptides and secondary metabolites) presented in this paper largely showed mineral- and tissue-specific responses. Most strikingly, G3P (glycerol-3-P), GPC (glycerol-P-choline) and choline phosphate responded differently to a type of mineral; an increase in N or K starvation and a decrease in P starvation. A dramatic increase in the levels of secondary metabolites, in particular, rutin and chlorogenate in both tomato tissues during N starvation were observed. Based on these data, it is necessary to clearly elucidate an unknown event taking place in a variety of abiotic impacts, and we are now studying to expand our knowledge on metabolic- and proteomic-responses using GS-MS and LC-MS.Tissue- and mineral-specific metabolic changes in tomato plants

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call