Abstract

Limestone can be an option for sulfate sorption, particularly from neutral mine drainages because calcium ions on the solid surface can bind sulfate ions. This work investigated sulfate removal from mine waters through sorption on limestone. Continuous stirred-tank experiments reduced the sulfate concentration from 588.0mg/L to 87.0mg/L at a 210-min residence time. Batch equilibrium tests showed that sulfate loading on limestone can be described by the Langmuir isotherm, with a maximum loading of 23.7mg/g. Fixed-bed experiments were utilized to produce breakthrough curves at different bed depths. The Bed Depth Service Time (BDST) model was applied, and it indicated sulfate loadings of up to 20.0gSO42−/L-bed as the flow rate increased from 1 to 10mL/min. Thomas, Yoon–Nelson and dose–response models, predicted a maximum particle loading of 19mg/g. Infrared spectrometry indicated the presence of sulfate ions on the limestone surface. Sulfate sorption on limestone seems to be an alternative to treating mine waters with sulfate concentrations below the 1200–2000mg/L range, where lime precipitation is not effective. In addition, this approach does not require alkaline pH values, as in the ettringite process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.