Abstract

The effective recognition of microseismic signal is related to the accuracy of mine-dynamic-disaster precursor-information processing, which is a difficult method of microseismic-data processing. A mine-microseismic-signal-identification method based on LMD energy entropy and the probabilistic neural network (PNN) is proposed. First, the Local-Mean-Decomposition (LMD) method is used to decompose the mine microseismic signal. Considering the problem of vector redundancy, combined with the correlation-coefficient method, the energy entropy of the effective product-function component (PF) is extracted as the feature vector of mine-microseismic-signal classification. Furthermore, the probabilistic neural network (PNN) is used for learning and training, and the blasting-vibration signal and the coal–rock-mass-rupture signal are effectively identified. The test results show that the recognition accuracy of the PNN is up to 90%, the calculation time and classification effect of the PNN are better, and the recognition accuracy is increased by 15% and 7.5%, respectively, compared with the traditional PBNN and GRNN. This method can accurately and effectively identify the microseismic signals of mines and has good generalization performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call