Abstract

Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.