Abstract
Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the long-range electron transfer across a ~300 Å (1 Å=0.1 nm) wide periplasmic 'gap', MtrA has been shown to be only 105 Å in maximal length. In the present paper, DmsE is further characterized via protein film voltammetry, revealing that the electrochemistry of the DmsE haem cofactors display macroscopic potentials lower than those of MtrA by 100 mV. It is possible this tuning of the redox potential of DmsE is required to shuttle electrons to the outer-membrane proteins specific to DMSO reduction. Other decahaem cytochromes found in S. oneidensis, such as the outer-membrane proteins MtrC, MtrF and OmcA, have been shown to have electrochemical properties similar to those of MtrA, yet possess a different evolutionary relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.