Abstract
Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer. Many RBPs are conserved between Caenorhabditis elegans and humans, and several are known to regulate apoptosis in the adult C. elegans germline. How these RBPs control apoptosis is, however, largely unknown. Here, we identify mina-1(C41G7.3) in a RNA interference-based screen as a novel regulator of apoptosis, which is exclusively expressed in the adult germline. The absence of MINA-1 causes a dramatic increase in germ cell apoptosis, a reduction in brood size, and an impaired P granules organization and structure. In vivo crosslinking immunoprecipitation experiments revealed that MINA-1 binds a set of mRNAs coding for RBPs associated with germ cell development. Additionally, a system-wide analysis of a mina-1 deletion mutant compared with wildtype, including quantitative proteome and transcriptome data, hints to a post-transcriptional regulatory RBP network driven by MINA-1 during germ cell development in C. elegans. In particular, we found that the germline-specific Argonaute WAGO-4 protein levels are increased in mina-1 mutant background. Phenotypic analysis of double mutant mina-1;wago-4 revealed that contemporary loss of MINA-1 and WAGO-4 strongly rescues the phenotypes observed in mina-1 mutant background. To strengthen this functional interaction, we found that upregulation of WAGO-4 in mina-1 mutant animals causes hypersensitivity to exogenous RNAi. Our comprehensive experimental approach allowed us to describe a phenocritical interaction between two RBPs controlling germ cell apoptosis and exogenous RNAi. These findings broaden our understanding of how RBPs can orchestrate different cellular events such as differentiation and death in C. elegans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.