Abstract

This paper deals with the discrete-time switched Lur’e problem in finite domain. The aim is to provide a stabilization inside an estimate of the origin’s basin of attraction, as large as possible, via a suitable switching rule. The design of this switching rule is based on the min-switching policy and can be induced by sufficient conditions given by Lyapunov–Metzler inequalities. Nevertheless instead of intuitively considering a switched quadratic Lyapunov function for this approach, a suitable switched Lyapunov function including the modal nonlinearities is proposed. The assumptions required to characterize the nonlinearities are only mode-dependent sector conditions, without constraints related to the slope of the nonlinearities. An optimization problem is provided to allow the maximization of the size of the basin of attraction estimate–which may be composed of disconnected sets–under the stabilization conditions. A numerical example illustrates the efficiency of our approach and emphasizes the specificities of our tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.