Abstract
A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.