Abstract

There are many well-known bivariate distributions, such as the normal distribution, for which the question of whether they are max- or min-infinite divisible was settled a long time ago. However, despite its popularity, the bivariate Marshall–Olkin family of copulas was never the target of such an investigation, presumably due to the deterrent character of its density. Herein, we show that the challenges faced can be overcome with ease thanks to a convenient factorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.